製造業において、新製品の設計・開発、製造技術の開発・ 実践に携わり、日本の工業の基幹を支える仕事がしたい

<得られる知識及び技法>

- ○幅広い工業分野の基幹となる機械工学の高度で先端的な 専門知識を身に付ける
- ○製造業の設計・製造・経営の全てを俯瞰した知識を身に付ける

<活躍できるフィールド>

機械工業を含むあらゆる製造業、農作業、化学製品、食品製造などの分野における設計・製造

区分等 · 必要単位数			1年次		2年次		養成する能力等	取得
		数	前 期	後期	前 期	後期	(後成9の能力等	単位数
(10単位) 地域創生リテラシー	思を	6 単位	地域創生のための社会 デザイン&イノペーション(2) 現代社会を見通す: 生命と感性の科学(1) 実践経営マネジメント概論(1) ソーシャルビジネス論(1)	グローカルな視座を養う(1)			地域課題に対する学際的思考 力を養成	6単位
		2 単 位			アカデミックコミュニー	ケーション(2)	学際的思考力とプレゼンテー ション能力を養成	2単位
		2 単 位	創成工学プロジェクト演習(2)		実践インターンシップ(2)		地域課題への実践力(グローバルなコミュニケーション能力, チャレンジ精神,協働力)を養成	4単位
プログラム科目 (20単位)	学位プログラムの専門性を養成	1 0 単位	【境界・学際領域科目】 材料組織評価学(2) 【プログラム専門科目】 材料・接合工学(2) 生産技術工学(2) 幾何数理機械工学(2) 【情報電気電子システム工学 プログラム科目】 電気自動車(2)	【プログラム専門科目】 実験流体力学(2) 先端精密加工学(2)		とか 先 付 () 製 の:	広い工業分野の基幹 では できる機械工学の高度で 端的な専門知識を身に する きまる できない できない はままれる きまる できない はままれる きまる はままれる という はままる はままる はままる はままる はままる はままる はままる はまま	14単位
				機械知能工学特別演習(4),	機械知能工学特別研究(6)			10単位
※1. 科目名の区分 : <mark>必修科目</mark> , 選択必修科目 , 選択科目 ※2.()内は単位数 ※3. [E]は英語対応科目					取得単位合計	34単位		

高度なメカトロニクスを駆使した,付加価値の高い 機械システムに係る技術の研究・開発をしたい

<得られる知識及び技法>

機械,電子,制御,数学の融合技術と,複数分野の技術を総合・統合する技法を身に付ける

く活躍できるフィールド>

○loT時代に対応した、ロボット、医療福祉機器 ○マイクロ・ナノ技術などの先進的な技術を用いる 次世代機械の研究・開発

Į.	区分等・		1年次		2年次		莱武士 7 张 山 笠	取得
必要単位数		汝	前 期	後期	前期	後期	養成する能力等	単位数
(10単位)地域創生リテラシー	と実践し	6 単位	地域創生のための社会 デザイン&イノベーション(2) 現代社会を見通す: 生命と感性の科学(1) 実践経営マネジメント概論(1)	グローカルな視座を養う(1) 農業・農村の組織マネジ メント(1)			地域課題に対する学際的思考 力を養成	6単位
		2 単 位			アカデミックコミュニケ	ケーション(2)	学際的思考力とプレゼンテー ション能力を養成	2単位
		2 単 位			実践インターンシップ(2)		地域課題への実践力(グローバルなコミュニケーション能力, チャレンジ精神,協働力)を養成	2単位
プログラム科目 (20単位)	学位プログラムの専門性を養成	1 0 単位	【境界・学際領域科目】 生体機械工学(2) 【プログラム専門科目】 力学系理論(2) 幾何数理機械工学(2)	【境界・学際領域科目】 マイクロ・ナノエ学(2) メカトロニクス制御(2) 【プログラム専門科目】 ロボット技術(2) 【情報電気電子システム工学プログラム科目】 感性情報処理システム(2))機械、電子、制御、数学の融合技術と、複数分野の技術を総合・統合する技法を身に付ける	14単位
		1 0 単位		機械知能工学特別演習(4).	機械知能工学特別研究(6)			10単位
	※1. 科目名の区分 : <mark>必修科目</mark> 選択必修科目 ※2.()内は単位数 ※3. [E]は英語対応科目				取得単位合計	34単位		

○エレクトロニクス技術者になりたい ○電動力応用技術者になりたい

<得られる知識及び技法>

○電子物性・半導体デバイスに関する知識 ○パワーデバイス・機器とその制御に関する知識

く活躍できるフィールドン

- ○電子部品,機器製造業 ○自動車産業,電力等社会インフラ産業
- 1年次 2年次 区分等• 取得 養成する能力等 単位数 必要単位数 前期 後期 前期 後期 地域創生のための社会 デザイン&イノベーション(2) 地 学域 際課 現代社会を見通す: 地域課題に対する学際的思考 単 グローカルな視座を養う(1) 6単位 生命と感性の科学(1) 的題 力を養成 思を 位 考解 グローバル化と国際的な 力決 環境問題とガバナンス I(1) 人の移動(1) とす 単テ 実る 践た 2 学際的思考力とプレゼンテー 力め 単 アカデミックコミュニケーション(2) 2単位 ション能力を養成 をに 位 養必 成要 地域課題への実践力(グローバ 2 ルなコミュニケーション能力、 創成工学プロジェクト演習(2) 単 2単位 チャレンジ精神,協働力)を養 位 【境界·学際領域科目】 【基盤要素技術科目】 〇電子物性 · 半導体 位 基礎/発展 電磁気学[E](2) スピントロニクス[E](2) プ デバイスに関する ラ 知識 4 グ 0 10単位 単 科 ラ 【基盤要素技術科目】 〇パワーデバイス・ 【システム応用技術科目】 位 B 4 アドバンストパワーエレクト 機器とその制御に システムバイオロジー(2) 0 ロニクス[E](2) 関する知識 専 電気自動車(2) 門 性 0 を 単 養 位 0 10単位 情報電気電子システム工学特別演習(4), 情報電気電子システム工学特別研究(6) 単 位 ※2.()内は単位数 ※3. [E]は英語対応科目 取得単位合計 30単位 ※1. 科目名の区分 : 必修科目 選択必修科目 選択科目

- ○情報技術者になりたい
- 〇通信技術者になりたい

<得られる知識及び技法>

- ○情報処理及びその応用システムに関する知識
- 〇通信方式・通信システムに関する知識

く活躍できるフィールド>

- 〇情報システム業界
- ○通信機器・システム関連業界

区分等 · 必要単位数			1年次		2年次		養成する能力等	取得
		X	前期	後 期	前期	後期	食成りる能力寺	単位数
(10単位) 地域創生リテラシー	思考力と実践	6 単位	地域創生のための社会 デザイン&イノペーション(2) 現代社会を見通す: 生命と感性の科学(1) 文化人類学研究 I (1)	グローカルな視座を養う(1) 感情コミュニケーションと 社会的共生 I (1)			地域課題に対する学際的思 考力を養成	6単位
		2 単位			アカデミックコミュニケ	テーション(2)	学際的思考力とプレゼンテー ション能力を養成	2単位
		2 単位	創成工学プロジェクト演習(2)				地域課題への実践力(グローバルなコミュニケーション能力, チャレンジ精神, 協働力)を養成	2単位
プログラム科目 (20岁	学位プログラムの専門性を養成	1 0 単位	【境界・学際領域科目】 エンジニアコーチング(1) 【基盤要素技術科目】 光制御回路工学(2) 【システム応用技術科目】 大規模システム最適化(2)	【境界・学際領域科目】 情報電気電子システム工学 特別講義(1) 【基盤要素技術科目】 信号処理特論(E)(2) 【システム応用技術科目】 応用情報システム特論 [E)(2)			○情報処理及びその 応用システムに関す る知識 ○通信方式・通信シス テムに関する知識	10単位
単位)		1 0 単位	情報	電気電子システム工学特別演習(4)。	情報電気電子システム工学特別研究	2(6)		10単位
art.	※1. 科目名の区分 : <u>必修科目</u> , 選択必修科目 , 選択科目 ※2.()内は単位数 ※3. [E]は英語対応科目					取得単位合計	30単位	